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I. Phys. A: Math. Gen. 26 (1993) 7547-7562, Printed in the UK 

A class of Bessel function integrals with application in particle 
physics 

I P Grant and H M Quineyi 
Mathematical Institute. University of Oxford, 24-29 SL Giles’. Oxford, OX1 3LB, UK 

Received 18 May 1993 

Abstract. Many problems in p d c l e  physics and Aeld theory require the evaluation of integrals 
of the iorm 

Our investigation arose in connection with a new method of pmial wave mass renormalivtion 
of the electron self-energy in quantum electrcdynamics (QED) where these integrals play a C N C i d  
role. Previous studies appear not Lo have led to expressions which are readily computable. We 
derive an explicit formula for the general case and a recursive method of mnsmction which 
allows us to geneme all cases ofpractid interest to high precision. Our algorithms are highly 
efficient on scalar computers and readily vectorire on suitable machines. 

1. Introduction 

This paper concerns the calculation of the integrals 

involving the product of three spherical Bessel functions of real, positive argument. For 
non-negative integer I ,  the spherical Bessel functions are related to the Bessel functions 
whose order is half an odd integer by 

The integrals in ( I )  can be expressed in terms of the integrals 

J/,+~,Z((~Z)J~~+I/Z(~Z)JI~+I/~(CZ)Z~/~ dz. (2) 

These integrals are related to the discontinuous integrals of Weber and Schafheitlin [1-3]. 
The special case of (1) in which I 1  = 0 and 12 = 13 can be related to formula (6.578.8) of 
[3]. In the present notation this reads 

t Now at Clarendon Labomory, University of Oxford. Parks Road, Oxford. OX1 3PU, UK 
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where 8, is real-valued and is given by 

I P Grant and H M Quiney 

C O S 6  = (Pi + P: - Pi)/(2PzPs) 

for values of p1. pz and p3 for which this makes sense. The derivation of the formula on 
which (3) is based is given by Watson ([I], pp 41 1-2). Related work is described by Bailey 
[4]. and Gervois and Navelet [5] have discussed similar integrals which have applications 
to phenomenological calculations in high-energy physics using the Regge formalism. An 
explicit formula for (1) was given by Jackson and Maximon [7] which was later employed by 
Danos et ai [8] in treating a problem in drg muon-catalysed fusion. The Jackson-Maximon 
formula is equivalent to our (18) below, as is the result of Davies and Davies [9] which 
was applied by Davies et al [IO] to the calculation of Green's functions in pion-nucleon 
scattexingt. 

The 'vertex integrals' (1) appear in the calculation of radiative transition amplitudes for 
free electrons. We encountered them in devising a new method of renormalization of the self- 
energy of a bound electron; a brief outline of the scheme is given in [I I]. Textbooks quote 
from the early papers of Feynman [12,13] and others (see, for example, the review by Mohr 
in [ 141) which lead to an expansion of the self-energy of a bound electron in a hydrogenic 
atom in powers of Za and Za In Za. It was realized quite early, for example by Brown et ai 
[IS], that this series is very slowly convergent - indeed it is not known for certain whether 
it is truly convergent - and non-perturbative methods are therefore preferred, particularly 
for higher values of Z. The first non-perturbative calculation was proposed by Brown ef al 
[I51 and carried out by Brown and Mayers [16], later corrected by Desiderio and Johnson 
1173. Mohr 118,191 used a somewhat different approach for calculations of the self-energy 
of n = 1,2 states which form the basis of the extensive tables of radiative corrections to 
electron binding energies in hydrogenic atoms by Johnson and Soff [20]. Mohr and Kim 
[21] used similar methods for hydrogenic n = 3,4 states. Cheng and Johnson [22] and 
others extended the method of [IS] to deal with finite nuclear size effects, and Cheng etal 
[23] have recently made such calculations for n = 2,3,4 states. Snyderman [24] suggested 
a major technical improvement which has been implemented in [XI. Further extensions to 
compute the self-energy of electrons in atomic mean-field potentials were reported at the 
Nobel Symposium No. 85 on Heavy Ion Spectroscopy and QED Effects in Atomic Systems 
in 1992 and are in course of publication in the journal Physica Scripta and elsewhere. 

These renormalization procedures, though well established, involves both theoretical 
and numerical difficulties. The self-energy calculation can be regarded as a perturbation 
correction to the binding energy arising from processes in which the electron jumps to a 
virtual excited state through an interaction with the quantized radiation field before returning 
to its initial state. "he total self-energy from all such virtual processes is infinite for both 
free and bound electrons, and it is usual to argue that the free self-energy is already taken 
into account in the observed electron mass. The correction to the binding energy of an 
atomic state therefore comes from the difference of two related calculations: one in which 
the electron propagates in the virtual states of the atomic field and one in which the virtual 
states are those of a free electron. Feynman [12,13] gave a simple operator form for the 
self-energy of a free electron wave packet, and the conventional method of renormalization 
identifies the relevant terms analytically and discards them so that only the finite remainder 
is calculated. This is still a formidable numerical calculation, involving both high-frequency 
photons and large angular momenta, and numerical convergence is slow. The strategy of 

t The reader should note that Davies et ol [IO] use a notalion similar to (1) but withou: the normalizing hclor 
4Pl P"n. 
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1111 aims to exploit the fact that the contribution of different radiation multipoles to the 
self-energy is additive: individual multipoles give finite contributions (though their sum is 
infinite without renormalization) and we have found that the sum of renormalized multipole 
contributions converges more rapidly to a finite result. 

The next section contains a brief survey of elementary properties of the integrals (1) 
and of the special functions appearing in the analysis. An elementary application of the 
Cauchy residue theorem is used to derive an explicit algebraic formula in section 2.3; this is 
rather similar to a fonnula of Gervois and Navelet 161 who used a rather different method of 
derivation. It is, however, totally unsuitable for the target application, and this has led us to 
develop the novel recursive algorithms reported in section 3. They have excellent numerical 
stability and can be programmed very efficiently on both serial and vector processors. We 
give in section 4 a simple illushation of the way in which the vertex integrals can be 
used in quantum mechanics and in the construction of the multipole counter terms in [ I  11 
and comment on the advantages of our method in comparison with alternative methods of 
calculation in section 5. 

2. An explicit formula 

2.1. Elementav properties of the integrals 

Inspection of equation (1) reveals that the integrals Zl,,12,1,(p~, p2,  p3)  are invariant with 
respect to a simultaneous permutation of the subscripts of both the order parameters I > ,  I 2 , / 3  

and the momentum parameters p1, p2, m by the same permutation 

1 2 3  
p = ( i  j k) 

so that 

~ l ~ , l d ~ ~ P l ~  P 2 ,  P 3 )  = h,.lj,l~b'i, p j ,  P k )  (4) 

for all such permutations. 

that is for any number ff > 0, 
It is also easy to see that 2 1 , . 1 ~ , l ~ ( p 1 ,  p z .  p3) only depends on the ratios of the momenta, 

1l,,l~,l,(pl, P2,  p3) = I l , , l * , l , ~ ~ P l ,  apz,  ffP3) .  (5) 

We shall see later that each vertex must conserve 3-momentum, so that the magnitudes P I ,  
p2, p3 must be able to form the sides of a plane triangle. Thus every non-zero vertex 
integcal contains the function 

1 if (PI, p2, p3) form a non-degenerate triangle 
PZ, p3) := 4 if (PI. p2,  p3)  form a degenerate triangle (6) 

as a factor. It follows from (5) that Z~,, l , ,~, (pt ,  p2, p3)  can be expressed entirely in terms 
of the angles Of, &, & of the triangle opposite to the sides p t .  p2. p3, respectively. Indeed 
since the sides of such a &iangle satisfy the sine rule, 

L otherwise. 

(sinedlpl = (sined/m = (sinW/m 
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we can immediately replace p i .  i = 1,2,3. by the corresponding value sine, without any 
scaling factor. The freedom to make this replacement, an important consequence of the 
normalization factor introduced in (1). will be put to good use later. 

The discontinuous character of the integrals Il,, ,2,i,(p,, p2, p3)  can be exhibited by 
elementary methods in the simplest case in which 1,  = I2 = /3 = 0 when we note that 

I P Grant and H M Quiney 

M z )  = (sinz)/z 

and that for any real number a 

CO sinaz 
d z = n s g n a .  L z 

The integrand and the integral are both identically zero when a is zero. We see that 

dr 
sin(pir) sin(pzr) sin(p3r)--. n o  Sm r Io,o,o(pi, p2, p3) = - 

Since 

sinx siny sinz = t ( s i n ( x  + y - z )  + sin(y + z - x )  + sin(z + x - y) - sin(x + y + 2)) 

and the numbers pi are by definition non-negative, we see that 

IO.O.O(PI I PZ, p3)  = flsgn(pt + PZ - ~ 3 )  + sgn(pz + p3 - P I )  + s g n ( m  + PI - PZ) - 1) 

where sgn(x)  denotes the sign of x .  When the three momenta PI.  p2, ps can be the sides 
of a non-degenerate plane triangle, all the expressions sgn(pi + p j  - p ~ )  have the value 
+ I  and the right-hand side sums to unity; if, say, the side p3 is longer than the sum of the 
other two sides, then sgn(pl+ pz - p3)  = -1, and the right-hand side sums to zero. In the 
degenerate case, p3 = p1 + p2, and the first term is zero. We therefore have 

(7) ~o.o.o(pi. pz. P 3 )  = A ( p i 9  PZ, P3) 

This is, of course, in agreement with the more general result of  ( 3 )  

2.2. Properties of spherical Besselfunctions 

The properties of spherical Bessel functions of the first kind, related to the ordinary Bessel 
functions by 

are crucial to our analysis. They are the solutions, bounded at the origin, of the second-order 
differential equation 

d2w dw 
dz2 dz 

22- + 22- + [Z* - I ( I  + I)]w = 0. 

The power series expansion is 

where 1 = 0, 1.2 ,  . . . . This power series expansion converges for all finite z E C. 
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The spherical Bessel function can also be expressed in terms of the spherical Hankel 
functions. defined by the formulae 

e - i ~  f 

hy’(z) = if- E(l + $,k)(2iz)-‘ 
k d  

where (1 + i ,  k )  = ( I  + k ) ! / k ! ( l  - k ) ! .  Then 

j f (z)  = +[h(”(z) + h/2)(z)l .  (13) 

It follows that hl(l’(z), h y ) ( z )  are meromorphic functions of z in any bounded region CJ c C 
having poles of order 1 + 1 at e = 0. We also see that hl(l)(e) tends to zero as Im z -+ +w 
and is unbounded in the lower half of the z-plane. SimilarIy hy’(z) tends to zero as 
h e  3 -w and is unbounded in the upper half of the e-plane. The relations 

j X - 2 )  = (-1)Ih(e) (14) 

where f i ( z )  can be any of j l (z) ,  hj”(z) or h y ) ( z )  and 

will also be useful. Finally, we shall require the remmence relation 

in the following section. 
More information on the spherical Bessel functions can he found in the classical 

monograph by Watson [I]  and in chapter 10 of the Handbook of Mathematical Functions 
PI. 
23. Derivation of the explicit formula 

Theorem 1. Let ( I l ,  1 2 .  13) be non-negative integers which can form the sides of a plane 
triangle and whose sum is an even integer. Let ( p i ,  p2, p3)  be non-negative real numbers. 
Then the function Jf,,f2,13(p1, p z ,  p3) is given by 

(ki+k>+kd x [(-1)(fl+kl)(p2 + p 3  - p, ) (k!+h+h)  + (-1)(h+‘Z) ( P 3  + PI - PZ) 
+ (-1)(f3+k3)(pi + pz - p3)*lthtk3’ - ( p z  + p3 + pl)(‘’+k‘+k’)]. (18) 

Thus the function vanishes unless the numbers p ,  , p2,  p3 can be the sides of a plane triangle. 
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Proof. Equation (14) shows that the integrand of (17) is an even function of x when 
l I  + l2 + l3 is even; thus the integration can be extended to the whole real line and we have 

I P Grant and H M Quiney 

Consider first the case in which (PI,  p2,  p3) do not form a plane triangle. It suffices to 
assume that p3 > PI + p z .  Then by equations (11)-(13), we see that 

where P denotes the Cauchy principal value. In fact the only singularity is a removable 
singularity at the origin; the integrand has leading power x1ftf1-f3+1 near x = 0, whose 
exponent is at least 1 because of the hypothesis that I l r 1 ~ , 1 3  form a hiangle. Now as 
a line integral in the z-plane, where x = Rez, we may associate (20) with the contour 
integral around a D-shaped contour (figure 1) consisting of the line segment [-R, +RI and 
a semicircle y in the upper half-plane taken in the positive sense. 

R -e o €  -R -R 0 R 
Figure 1. Contour for evaluation of (20). Figure 2. Contour for evaluation of (21) 

Since the the integrand has, at most, a removable singularity at z = 0 and is holomorphic 
elsewhere in C its contour integral vanishes by Cauchy’s theorem. It only remains to prove 
that the integral over the semicircular arc vanishes as R + 03 to be able to conclude that the 
right-hand side of (24) vanishes. This is straightforward if we consider equations (11)-(13), 
which show that on this arc, 

Thus since, by hypothesis, k = p3 - PI  - pz  is positive 

where the second step has employed symmetry about 0 = n/2 and Jordan’s inequality (for 
example [261 p 113). Thus the integral on y vanishes, and so does 11,,1~,1,(p1, p z .  p3) .  
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Now consider the case when ( p i ,  p z .  p3) can form a non-degenerate triangle. In this 
case we apply (13) to all the spherical Bessel functions in (1) so that 

+ hI:)(Plx)h:;’)(pzx)h:~)(P3x) + h::)(Plx)h:;”(Pzx)h:;’)(P3X) 

+ hj:)(Prx)h:;2’(Pzx)h:~)(P3x) + h::)(Plx)h:;”(Pzx)h:~)(P3x) 

+ h::’(ptx)h:;’(pzx)hj:’(p3x) + h ~ ~ ’ ( g i ~ ) h : ; 2 ’ ( ~ z x ) h ~ ) ( p 3 ~ ) ) ~ ~  dx. (21) 

The second terms in each line of (21) are the complex conjugates of the first terms so that 
we need consider only the latter. This time, we must use the contonr of figure 2, which 
resembles that of figure 1, but has also a semicircular indentation U of radius E so that the 
contour passes above the multiple pole at the origin. 

When (pi, p z ,  p 3 )  can form a triangle, the inequalities (6) show that pi + p z  + p3 ,  
PI + PZ - p3, pi - pz  + p3, - P I  + p z  + p3 are all positive, so that an argument similar 
to that used when (PI ,  p z .  p3)  do not form a triangle shows that the integrals all vanish as 
R + 00 on the semicircular arc y .  As before, the integrands are holomorphic within and 
on the contour, and so by applying Cauchy’s theorem before passing to the limit as E + 0, 
we arrive at the conclusion that Zt,,i2,i,(pl, p z ,  p3) is equal to (-in) times the sum of the 
residues at z = 0. A tedious but straightforward calculation using equations (1 I), (12) leads 
directly to the required result. 

Degenerate cases, for example p3 -+ 0 or p3 + pi + pz ,  are best regarded as Limiting 
0 

It neatly displays the symmetry of 
h,,lz,f3(p1, pz .  p3)  with respect to permutation of the subscripts (1,2,3), and the fact that the 
function is rational, homogeneous and of degree zero. Moreover ( p , ,  p z ,  p3) must be able 
to form a plane triangle to get a non-zero result. If pi , pz and a are 3-vectors with norms 
p i ,  pz and p3 then the triangle condition is equivalent to the statement p ,  + pz  + p3 = 0;  
this therefore imposes conservation of 3-momentum at each vertex of a Feynman diagram. 

The condition that 11 + 12 + 13 be an even integer is necessary for the derivation of 
formula (18) but the condition that 1 1 ,  12, 13 can form a triangle is only used to show 
that h 2 , ~ 2 , ~ 3 ( p t ,  p z ,  p3) = 0 when A ( P I ,  pz,  p3) = 0. It is clear that the sum (18) has a 
meaning even when A( l1 ,1~ ,13)  = 0, but it is then no longer possible to conclude that 
Z / s , ~ z . ~ 3 ( p ~ ,  pz ,  m) still vanishes when p ~ ,  p3)  = 0 . This observation can sometimes 
he useful if we need to evaluate Z ~ l , ~ 2 , 1 , ( p ~ ,  p z ,  p3) from (18) to obtain starting values for 
the recursive algorithms of the next section. 

Whilst it is trivial to write 
Z ~ , . ~ 1 . ~ , ( p l , p z , p 3 )  as a rational function of sinei, the formula is very inconvenient for 
numerical calculation. Although the function is clearly well behaved in any limit p3 + 0 
or p3 + p~ + pz.  this involves a delicate cancellation of negative powers of pi which is 
not easy to automate. This is largely avoided in the recursive method algorithms of the next 
section. 

cases of the general formula (18). 

The formula (18) is of limited usefulness. 

The main disadvantage of (18) is its complexity. 



7554 

3. Recursive construction of I~,,~~.l,(p~. m, p,) 

The numerical construction of the integrals Il,,f2,l3(pl. p2? p , )  can hest be accomplished by a 
recursive scheme, taking advantage of the fact that in the target application-the calculation 
of the self-energy of a bound atomic electron-at least one spherical Bessel function will 
have low order. Thus we can take one parameter, say I , ,  to have the values 0, 1 or 2 in the 
first instance. The algorithm required depends on a family of auxiliary integrals which we 
shall discuss first. 

3.1. The aui I iag  integrals H: (8,. 82,6'j) 

A class of integrals related to the discontinuous integrals of Weber and Schafheitlin is treated 
by Watson [l], section 13.46; see also Gradshteyn and Ryzhik [3], formula 6.578.8. Let the 
non-negative reals a ,  b ,  c satisfy A(a,  b, c)  = 1 and let A ,  B ,  C be the angles opposite to 
the sides of length a .  b ,  c in a plane triangle. Then ([l], section 13.46) 

I P Grant and H M Quiney 

where P t ( x )  is an associated Legendre function of the first kind, Re(p) z -h and 
Re(u) > -;. The integral vanishes if A(a,  b, c) = 0. Putting p = I 1  + i, U = 12 + h, 
a = PI. b = PZ. c = p3, A = 81. B = 82, C = 93, we can define a new function 

sin 82 sin 03 'I 
= ( sin 81 ) P1;"(c0s8,) 

where 12 2 I ] .  Because of the recumence relation ( [2 ] ,  formula 8.5.3) 

( u - ~ ~ f ~ P ~ + , ~ c o s B ! = ( 2 u + I ) c o s 8 P ~ ( c o s 8 ) - ( u + p ) P ~ ~ , ( c o s 8 )  (24) 

valid for U = -p.  -p + 1 , .  . . , and the formula 

P;'(COSB) = (sin' e) /z f i !  (25) 

the functions 

GL(8) := Zf1!(sin8)-'P,-'(cos8) (26) 

with U > I ,  are polynomials in cos8 so that we can write 

$(Qi l@zr83)  = f i , (@~83K$(Qi)  (27) 

where 

&(e*, 83) := (sin'8~sin'83)/(2~f!). (28) 

It follows that H;; (e,, ez, e3) is a trigonometric polynomial function of its arguments. It 
can be generated directly by the following algorithm: 
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Evaluate (28) with GI = 1.0 and 
a: = ( 1  - k ) / ( I  + k + 1) 

G;+, (el) = C O S B ~  (1 - a:)~:(01) + a f ~ i - ,  (e,) 

Algorithm 1 .  

(29) 

(30) 

then 

for k = I ,  i + 1, 1 + 2, . . . , from which Hi (01, &, 6'3) can be constructed using (27). 

It is clear that this linear recurrence relation is stable as k increases. 

3.2. Algorithms for the generation of 11, ,I~,I, (PI , p 2 ,  p ~ )  

It is convenient to generate thsa integrals in successive 'layers' characterized by the value 
of 11. 

3.2.1. The layer il = 0 .  

Algorithm 2. 

I ~ , I , ~ ( P ~ ,  pZ, p3) = ~ ; O ( e ~ , e ~ , e ~ )  = P,(COSO~). (31) 
From the symmetry of the function & , , ~ , ~ , ( p ~ , p z .  p3) with respect to its arguments. it 
follows immediately that 

&$,I (PI, P 2 ,  P 3 )  = 9 (COS~Z) 
~ l . I . o ( P l , P 2 , P 3 ) = 9 ( C O S 9 ) .  

3.2.2. The layer 1, = I .  In this case, we begin by applying (20) in the form 
Z 

jr(z)  = - U-I(Z) + j f + ~ ( z ) l  

HI' (e,, e,. 6) = - 4p 1pzp3 Jdm X ~ ( P I X ) - ' ~ I  ( P I X ) ~ & W ) ~ I ( P ~ X )  dx 

21 + 1 
to the last spherical Bessel function in the equation 

JI 

yielding the formula 
sin 03 

(21 + 1) sin 01 

sin 0, 
(U + 1) sin 6'1 

l ~ l , l , f + l ~ P l ~ P z ~  P 3 )  + ~ l , f , l - l ( P l , P 2 . P 3 ) J .  H; (e,. e,. 0,) = 

Similarly, applying (16) to the second spherical Bessel function gives 

HI' (01, b 03) = ~ ~ l , l + l , l ~ P i ~  PZ. P 3 )  + Zl.l-I.I(PI1 PZ, P 3 ) ) .  

The selection rules on the indices 11,12,13 imply that that all the non-zero functions in 
the layer can be generated recursively from these two relations if we know the functions 
h . 0 . 1  (PI, PZ, ~ 3 )  and 4.1.0 (PI, PZ, ~ 3 )  (figure 3). 

Aigorithm 3. Initialize the non-zero elements on lines 12 = 1 and 13 = 1: 

p 2 ,  p 3 )  = P]   COS^,) z l , o , l ( ~ l ,  p 2 , p 3 )  = (cosez). (37) 
Then for each 1 = 1, 2. . . . . 

The functions H: ( O l , O z ,  03) are generated using algorithm 1. 
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I3 1 2 3 L  2 
1 
2 
3 
4 

Figure 3. Construction of the layer 11 = I: e, initial values from layer 
11 = 0, x, values of ~,l; 0, computed values. 

'3 
\k 

3.2.3. The layer I ,  = 2 .  Two applications of (34) are required in order to generate the 
recurrence relations in this layer. For reasons of legibility, here we drop the arguments Si ,  
provided we remember that it is no longer permissible to pebute the indices 1i. We must 
reinstate the 6, if it is necessary to do this. Applying (34) twice to the hiid and the second 
spherical Bessel functions defining Hi in (23) gives. respectively, 

1 12.1.1tZ + 212.1.1 + sin2 63 12.1.1-2 = I] (U - 1)(21 + 1) (21 - l)(U + 3) (U + l)(U + 3) 

and 

(41) 
h - 2 J  212.1.1 h + 2 J  

(U - l ) (U + I) + (21 - l)(U + 3) + (21 + 1)(U + 3) 

A third recurrence relation appears if we use (34) once each on the second and third spherical 
Bessel functions, giving 

The three recurrence relations generate patterns connecting points on the (12, L3) lattice 
covering the I I  = 2 layer as shown in figure 4. 

f 1 

A2 
Figure 4. Recurrence pat- 
tems in @ layer (1 = 2. '3 

Examining the pattern of figure 5, we see that we need an additional starting value, 
12.2.2, which cannot be obtained from lower layers. This quantily can be constructed from 
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1 2 3 4  5 I2 * 
1 
2 
3 
4 
5 

Figure 5. Construction of the layer 11 = 2 e. initial values from layers 
1, = 0. 1; x, values of H:; 0, computed values. 

13 
v 

(22), rewritten in terms of the angles 81, 02. 03, a tedious operation for which we have used 
the MAPLE V, version 2 system. The result is 

(43) 
sin’ el cos el sin2 6 cos E+ sin2& COS e, 

SUI& sin02 
+ .  

sinOzsine3 + sin& sinel 
IZ.ZZ(P1 I PZ, P3) = 

Algorithm 4. First initialize the non-zero values Iz.z.0, 12.0.2 on the lines l 3  = 0 and l2 = 0 
respectively; I Z J J ,  12.3.1 and 1 2 ~ 3  on the lines 13 = 1 and 12 = 1 respectively using the 
relevant entries from layers 0, 1; and 1z.z.z From (43). 

Then for 1 = 2, 3, calculate successively 

corresponding to pattern A! of figure 4; and 

corresponding to pattern A2; and 

corresponding to pattern A3 of figure 4. 

3.2.4. Layers with I t  > 3. The major uses of the algorithms so far described only require 
layers / I  = 0, I ,  2, with Iz, 13 taking values up to about 40 or50. However, for completeness, 
we now describe the procedure for higher layers whose structure is easy to understand when 
one examines what we have done so far. 

(i) Initialize on the lines l z  = k, I3 = k ,  k = 0, 1,. . . , m - 1. This is accomplished by 
using results from layers 11 = 0, 1, . . . , m - 1 in combination with the symmetry relation 
(7). Missing values on lines 12 + 1, = 2m if m is even or lz + ls = 2m + I if m is odd may 
be obtained from (18). 

(ii) Next calculate the integrals H;”, l m using algorithm 1. 
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nll,'m' (b)  

Figure 6. (a )  Diagrammatic representation of (SI). The double lines represent bound states: the 
dashed line represents the multipole operator. (b)  Expansion of the one-electron mavix element 
in t e m  of free panicle spheric4 waves. 

(iii) The remaining entries in layer m can be computed using the m + 1 recurrence 
relations A I ,  Az,  . . . , Amit which generalize the three relations Al. Az. A3 of algorithm 4. 
These are applied in succession to generate the integrals with 12 > m, I3 > m, starting on the 
diagonal with I,.,,, when m is even or on the immediately adjacent sub- and super-diagonal 
lines with I,,,,,+I and I,,,.,,,+I.~ when m is odd, and working outwards to the limits set by 
the selection rules. Thus on the line Is, the non-zero entries satisfy 13 = 111 - Izl, . . . , I ]  + 12 
with 11 + 12 + 13 an even integer. This makes alternate entries vanish along the line. 

4. Some applications 

A simple problem which brings out some of the consequences of the selection rules on 
linear and angular momentum permits verification of the algorithms described in the last 
section. We consider first a simple process in which a (non-relativistic) bound electron 
in a state described by quantum numbers n, 1 interacts with a multipole field proportional 
to OL.M = jL(kr)Y?(B, 4) and enters a state with quantum numbers n'. I' .  The matrix 
element is 

(n ' , I ' ,m ' lOL .MIn . [ ,m)  (47 )  

which can be represented by the diagram in figure 6(a). This expression can be evaluated 
in a straightforward manner; the angular momentum selection rules require that 

(48) 
Standard results of angular momentum theory (for example in [U]) enable us to write this 
in the form 

(n' ,  '',m'lOL,Mln, I ,  m) 

1' - I'I 4 L < I + I '  1' + L + 1 an even integer 

.- 

The angular momentum selection rules are implicit in the 3 j  symbols appearing in this 
expression. 
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k 

Figure 7. The region of integration in equation 
k p (56). 

Now let us suppose that the radial amplitudes &(r) possess (spherical) Hankel 
transforms. The functions Rn,(r) and &(k) are said to be (spherical) Hankel transform 
pairs [28.29] if 

R d r )  = f / m S d k ) j ~ ( k r ) k z ~  Z o  (51) 

These relations are equivalent to the statements 
rc lm jr(kr)jl(kr')k2dk = -8(r - r') 

2 9  

7r lm jf(kr)jI(k'r)r*dr = -&(k - k'), 
2kZ 

(53) 

(54) 

Inserting (51) in (49) and using (1). we see that 

T&,,i(k) = - / / G14p')h, ,L,dp'9 k, p)Sdp)p'dp'p dp. (55) 

We can represent this in terms of the diagram in figure 6(6). 
Since I ~ , L J ( ~ ' ,  k, p) vanishes unless p'. k, p can form the sides of a plane triangle, the 

domain of integration over p'. p is restricted to the region shown in figure 7. This has the 
effect that 

2k 

which highlights the meaning of the integral !ft,L,l(p', k, p )  as a distribution. 
demonstration, suppose that 0 < k < p ,  0 < k < p'. and consider 

For a 

1 lry f (pi3 k, P )  z4,o,Ap', k. P )  dp' 

.! /' f ( P  + tk, k, P ) ~ O . I ( P  t t k ,  k, p )  dt 
2 -1 

where f ( p ' ,  k ,  p) is a continuous and integrable function. Putting p' = p+tk. -1 < t < 1, 
we see that this becomes 
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which reduces with the aid of (32) to f (p ,  0, p)Pl(l) from which (56) follows immediately. 
It follows that 
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as expected. 
The renormalization algorithm of [l 11 requires the evaluation of 

where gp.p, is the usual Minkowski metric, (+l, -1, -1, -I], 

~ ( p ,  a)  = acJ- 

is the energy of a free electron and 

a := sgn E(p. a)  

which takes the value + I  for electron states and -1 for positron (negative energy) states. 
The momentum wavefunction of the state whose self-energy is being calculated is denoted 
by h ( p ,  +l), a solution of Dirac's equation in a local mean field potential, and 

(%I UpC,Y(Q, @)jdkr)  I P'. K', a') 

(59) 

is a radiative transition matrix element from the bound state into a free electron virtual state 
[30]. Here we have used (51) to express the bound state as a linear combination of free 
electron states of the form 

- t  P+k 
= / dpi q0(pi. +~)Q"(PI, +I ,  ~ 0 . m ;  k. U, A; p,a.K, m) 

1'-XI 

in spherical polar coordinates. Here p = pr; K is related to the total angular momentum of 
the state by K = i ( j + $ ) ,  j = 4, ;, ... ;[ = K , I = K -  1 ifK > 0 andl = - K -  I , i =  -K 

if K < 0; and xz.m(Q, @) is a spin-orbit eigenfunction [31]. With this normalization the 
states (60) are normalized to a delta function of energy E(p, a). Also UP is a 4 x 4 Dirac 
matrix, and Cl@, @) is a spherical harmonic, standardized in the manner of [27]. 

After carrying out the angular integrations, the mahix elements (59) can be written 
[30,31] as linear combinations of integrals over Dirac radial components of the form 
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where P ( r )  is an upper component and Q ( r )  is a lower component and the bars denote 
complex conjugation. After taking account of the transform (51), we see that these integrals 
are linear combinations of the vertex integrals b , ~ , ~ ( p ,  k, p').  In the renormalization 
problem for s- and pip-states, only vertex integrals with 1 = 0, 1 appear, though the 
multipole order L, and therefore 1', may be as high as 30-50. The triangle conditions on 
the momentum arguments in (59) mean that the innermost quadratures over p ,  and p2 are 
confined to the finite interval (Ip - kl, p + k ) ,  so that there are only two integrations over 
an infinite range. It is possible to show that these integrals are finite, so that MO is a sum 
of finite contributions. The sum over U is logarithmically divergent, as expected. However, 
if individual terms of (59) are subtracted from the corresponding terms in which the virtual 
electron propagates in the atomic field, the resulting sum over U converges to the observable 
self-energy shift [ll]. No other regularization is needed. 

5. Discussion 

We have devised a new recursive algorithm for the vertex integrals Z ~ , , L J ( ~ ' ,  k. p )  which 
is particularly well suited to production in the large numbers required for computing the 
electron self-energy in atomic structure [l 11. The algorithm is both fast and accurate, capable 
of calculating the integrals to machine precision. For s- and p,/z-state renormalization, the 
four-dimensional integration requires some 104-105 vertex integrals in each run. It is 
possible to code the algorithms for efficient evaluation on vector processors. The complete 
self-energy calculation mns in a few tens of minutes on a Sun SPARCstation ELC. 

Other algorithms, for example, the evaluation of the explicit formula (18) or the 
equivalent Jackson-Maximon formula [7], are less attractive for this type of calculation. 
The latter requires the evaluation of the tensor product of rank 0 of three spherical harmonics 

Jackson and Maximon propose a recursive algorithm for evaluating each such sum which 
has a much more complicated structure than our procedure and which seems in principle 
less well suited to mass calculation of vertex integrals. Like our own formula (18) it is 
impossible to avoid cancellations with attendant numerical inaccuracies. 
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